6 Metamorphic Rocks

The painted wall is a large cliff
Painted Wall of Black Canyon of the Gunnison National Park, Colorado, made of 1.7 billion-year old gneiss intruded by younger pegmatites.

6 Metamorphic Rocks

Contributing Author: Dr. Peter Davis, Pacific Lutheran University

KEY CONCEPTS

  • Describe the temperature and pressure conditions of the metamorphic environment
  • Identify and describe the three principal metamorphic agents
  • Describe what recrystallization is and how it affects mineral crystals
  • Explain what foliation is and how it results from directed pressure and recrystallization
  • Explain the relationships among slate, phyllite, schist, and gneiss in terms of metamorphic grade
  • Define index mineral
  • Explain how metamorphic facies relate to plate tectonic processes
  • Describe what a contact aureole is and how contact metamorphism affects surrounding rock
  • Describe the role of hydrothermal metamorphism in forming mineral deposits and ore bodies
The rock cycle shows how different rock groups are interconnected. Metamorphic rocks can come from adding heat and/or pressure to other metamorphic rock or sedimentary or igneous rocks
Rock cycle showing the five materials (such as igneous rocks and sediment) and the processes by which one changes into another (such as weathering). (Source: Peter Davis)

Metamorphic rocks, meta- meaning change and –morphos meaning form, is one of the three rock categories in the rock cycle (see Chapter 1). Metamorphic rock material has been changed by temperature, pressure, and/or fluids.The rock cycle shows that both igneous and sedimentary rocks can become metamorphic rocks. And metamorphic rocks themselves  can be re-metamorphosed. Because metamorphism is caused by plate tectonic motion, metamorphic rock provides geologists with a history book of how past tectonic processes shaped our planet .

6.1 Metamorphic Processes

Metamorphism occurs when solid rock changes in composition and/or texture without the mineral crystals melting, which is how igneous rock is generated. Metamorphic source rocks, the rocks that experience the metamorphism, are called the parent rock or protolith, from proto– meaning first, and lithos- meaning rock. Most metamorphic processes take place deep underground, inside the earth’s crust. During metamorphism, protolith chemistry is mildly changed by increased temperature (heat), a type of pressure called confining pressure, and/or chemically reactive fluids. Rock texture is changed by heat, confining pressure, and a type of pressure called directed stress.

6.1.1  Temperature (Heat)  

Temperature measures a substance’s energy—an increase in temperature represents an increase in energy . Temperature changes affect the chemical equilibrium or cation balance in minerals. At high temperatures atoms may vibrate so vigorously they jump from one position to another within the crystal lattice, which remains intact. In other words, this atom swapping can happen while the rock is still solid.

The temperatures of metamorphic rock lies in between surficial processes (as in sedimentary rock) and magma in the rock cycle. Heat-driven metamorphism begins at temperatures as cold as 200˚C, and can continue to occur at temperatures as high as 700°C-1,100°C . Higher temperatures would create magma, and thus, would no longer be a metamorphic process. Temperature increases with increasing depth in the Earth along a geothermal gradient (see Chapter 4) and metamorphic rock records these depth-related temperature changes.

6.1.2. Pressure

Pressure is the force exerted over a unit area on a material. Like heat, pressure can affect the chemical equilibrium of minerals in a rock. The pressure that affects metamorphic rocks can be grouped into confining pressure and directed stress. Stress is a scientific term indicating a force. Strain is the result of this stress, including metamorphic changes within minerals.

Confining Pressure

Pressure is a state where all stresses on a body are equal. The magnitude of these balanced stresses increases with increasing depth within the earth. These stresses can not deform rocks other than to decrease their volume. Pressure is the term used becuase the concept of pressure is used in chemistry, which it the discipline of science used to understand the mineral reactions that occur within the rock. DIRECTED STRESSES s, s, One or more directions of stress are not equal in magnitude and or not in line with each other (non-coaxial). Unlike balanced stresses, the difference in these stresses can deform rocks within the earth.
Difference between pressure and stress and how they deform rocks. Pressure (or confining pressure) has equal stress (forces) in all directions and increases with depth under the Earth’s surface. Under directed stress, some stress directions (forces) are stronger than others, and this can deform rocks. Source: Peter Davis

Pressure exerted on rocks under the surface is due to the simple fact that rocks lie on top of one another. When pressure is exerted from rocks above, it is balanced from below and sides, and is called confining or lithostatic pressure. Confining pressure has equal pressure on all sides (see figure) and is responsible for causing chemical reactions to occur just like heat. These chemical reactions will cause new minerals to form. 

Confining pressure is measured in bars and ranges from 1 bar at sea level to around 10,000 bars at the base of the crust .  For metamorphic rocks, pressures range from a relatively low-pressure of 3,000 bars around 50,000 bars , which occurs around 15-35 kilometers below the surface.

Directed Stress

Pebbles in quartzite deformed by directed stress
Pebbles (that used to be spherical or close to spherical) in quartzite deformed by directed stress

Directed stress, also called differential or tectonic stress, is an unequal balance of forces on a rock in one or more directions (see previous figure). Directed stresses are generated by the movement of lithospheric plates. Stress indicates a type of force acting on rock. Strain describes the resultant processes caused by stress and includes metamorphic changes in the minerals. In contrast to confining pressure, directed stress occurs at much lower pressures and does not generate chemical reactions that change mineral composition and atomic structure . Instead, directed stress modifies the parent rock at a mechanical level, changing the arrangement, size, and/or shape of the mineral crystals. These crystalline changes create identifying textures, which is shown in the figure below comparing the phaneritic texture of igneous granite with the foliated texture of metamorphic gneiss.

Two rocks with very similar colors. One is a granite and another is a gneiss that has aligned dark minerals.
An igneous rock granite (left) and foliated high-temperature and high-pressure metamorphic rock gneiss (right) illustrating a metamorphic texture. (Source: Peter Davis)

Directed stresses produce rock textures in many ways. Crystals are rotated, changing their orientation in space. Crystals get fractured, reducing their grain size. Or they may instead grow larger. Crystal shapes also become deformed. These mechanical changes occur via recrystallization, which is when minerals dissolve from an area of rock experiencing high stress and precipitate or regrow in a location having lower stress. For example, recrystallization increases grain size much like adjacent soap bubbles coalesce to form larger ones. Recrystallization rearranges mineral crystals without fracturing the rock structure, deforming the rock like silly putty; these changes provide important clues to understanding the creation and movement of deep underground rock faults.

6.1.3 Fluids

A third metamorphic agent is chemically reactive fluids that are expelled by crystallizing magma and created by metamorphic reactions. These reactive fluids are made of mostly water (H2O) and carbon dioxide (CO2), and smaller amounts of potassium (K), sodium (Na), iron (Fe), magnesium (Mg), calcium (Ca), and aluminum (Al). These fluids react with minerals in the protolith, changing its chemical equilibrium and mineral composition, in a process similar to the reactions driven by heat and pressure. In addition to using elements found in the protolith, the chemical reaction may incorporate substances contributed by the fluids to create new minerals. In general, this style of metamorphism, in which fluids play an important role, is called hydrothermal metamorphism or hydrothermal alteration. Water actively participates in chemical reactions and allows extra mobility of the components in hydrothermal alteration.

Fluids-activated metamorphism is frequently involved in creating economically important mineral deposits that are located next to igneous intrusions or magma bodies. For example, the mining districts in the Cottonwood Canyons and Mineral Basin of northern Utah produce valuable ores such as argentite (silver sulfide), galena (lead sulfide), and chalcopyrite (copper iron sulfide), as well as the native element gold . These mineral deposits were created from the interaction between a granitic intrusion called the Little Cottonwood Stock and country rock consisting of mostly limestone and dolostone. Hot, circulating fluids expelled by the crystallizing granite reacted with and dissolved the surrounding limestone and dolostone, precipitating out new minerals created by the chemical reaction. Hydrothermal alternation of mafic mantle rock, such as olivine and basalt, creates the metamorphic rock serpentinite, a member of the serpentine subgroup of minerals . This metamorphic process happens at mid-ocean spreading centers where newly formed oceanic crust interacts with seawater.

There is a large build up of minerals around the vent
Black smoker hydrothermal vent with a colony of giant (6’+) tube worms.
Some hydrothermal alterations remove elements from the parent rock rather than deposit them. This happens when seawater circulates down through fractures in the fresh, still-hot basalt, reacting with and removing mineral ions from it. The dissolved minerals are usually ions that do not fit snugly in the silicate crystal structure, such as copper. The mineral-laden water emerges from the sea floor via hydrothermal vents called black smokers, named after the dark-colored precipitates produced when the hot vent water meets cold seawater. (see Chapter 4, Igneous Rock and Volcanic Processes) Ancient black smokers were an important source of copper ore for the inhabitants of Cyprus (Cypriots) as early as 4,000 BCE, and later by the Romans .

Your Score:  

Your Ranking:  

6.2 Metamorphic textures

Metamorphic texture is the description of the shape and orientation of mineral grains in a metamorphic rock. Metamorphic rock textures are foliated, non-foliated, or lineated are described below.

Click on photo for link to OCR document. http://opengeology.org/textbook/wp-content/uploads/2016/07/MetaRx3.pdf
Metamorphic rock identification table. (Source: Belinda Madsen)

6.2.1 Foliation

Foliated rocks are defined by the parallel alignment of mineral grains that are mostly thin and planar such as micas or in some cases hornblende. Foliated rocks typically appear as if the minerals are stacked like pages of a book, thus the use of the term ‘folia’, like a leaf, for foliation. Some minerals are longer in one direction, linear like a pencil or a needle, rather than a planar-shaped book. These linear objects can also be aligned within a rock. This is referred to as a lineation. Linear objects, such as hornblende grains, tourmaline, or stretched quartz grains, can be arranged as a foliation, lineation, or foliation/lineation together. First they can lie on a plane, but with no common or preferred direction, this is foliation. Secondly, minerals can line up and point in a common direction, this is lineation. Finally, minerals can lie on a plane AND point in a common direction; this is both foliation and lineation.   

Lineation is aligned linear features in a rock. An example in the figure is a bundle of aligned straws.
Example of lineation where minerals are aligned like a stack of straws or pencils. (Source: Peter Davis)
Aligned tourmaline crystals in line with foliation. Foliation is the fine "layers" of the rock.
An example of foliation WITH lineation. (Source: Peter Davis)
Foliated surface displays non-lineated hornblende grains. A cross-section displays a cross section of foliated plagioclase and hornblende
An example of foliation WITHOUT lineation. (Source: Peter Davis)

Slate is a fine-grained metamorphic rock that exhibits a foliation called slaty cleavage that is the flat orientation of the small platy crystals of mica and chlorite forming perpendicular to the direction of stressThe minerals in slate are too small to see with the unaided eye. The thin layers in slate may resemble sedimentary bedding, but they are a result of directed stress and may lie at angles to the original strata. In fact, original sedimentary layering may be partially or completely obscured by the foliation. Thin slabs of slate are often used as a building material for roofs and tiles.

Rock breaking along flat even planes.
Slate mine in Germany cleavage.

Foliation is caused by metamorphism. Bedding is a result of sedimentary processes. They do not have to align.
Foliation vs. bedding. Foliation is caused by metamorphism. Bedding is a result of sedimentary processes. They do not have to align. (Source: Peter Davis)

A foliated rock with a slight sheen.
Phyllite with a small fold. (Source: Peter Davis)

Phyllite is a foliated metamorphic rock in which platy minerals have grown larger and the surface of the foliation shows a sheen from light reflecting from the grains, perhaps even a wavy appearance, called crenulations. Similar to phyllite but with even larger grains is the foliated metamorphic rock schist, which has large platy grains visible as individual crystals. Common minerals are muscovite, biotite, and porphyroblasts of garnets. A porphyroblast is a large crystal of a particular mineral surrounded by small grains. Schistosity is a textural description of foliation created by the parallel alignment of platy visible grains. Some schists are named for their minerals such as mica schist (mostly micas), garnet schist (mica schist with garnets), and staurolite schist (mica schists with staurolite).

Schist is a scalely looking foliated metamorphic rock.
Schist

Shiny foliated rock with small crystals of red faceted garnet among the foliated micas.
Garnet staurolite muscovite schist.

Alternating bands of light and dark minerals.
Gneiss
Gneissic banding is a metamorphic foliation in which visible silicate minerals separate into dark and light bands or lineations. These grains tend to be coarse and often folded. A rock with this texture is called gneiss. Since gneisses form at the highest temperatures and pressures, some partial melting may occur. This partially melted rock is a transition between metamorphic and igneous rocks called a migmatite .

Swirling bands of light and dark minerals.
Migmatite

Migmatites appear as dark and light banded gneiss that may be swirled or twisted some since some minerals started to melt. Thin accumulations of light colored rock layers can occur in a darker rock that are parallel to each other, or even cut across the gneissic foliation. The lighter colored layers are interpreted to be the result of the separation of a felsic igneous melt from the adjacent highly metamorphosed darker layers, or injection of a felsic melt from some distance away.

6.2.2 Non-foliated

pink crystallized rock with interlocking crystals
Marble
Crystallized rock with interlocking crystals.
Baraboo Quartzite

Non-foliated textures do not have lineations or alignment of mineral grains. Non-foliated metamorphic rocks are typically composed of just one mineral, and therefore, usually show the effects of metamorphism with recrystallization in which crystals grow together but with no preferred direction. The two most common examples of non-foliated rocks are quartzite and marble. Quartzite is the metamorphic equivalent of the protolith quartz sandstone in which the quartz grains are enlarged and interlocked by recrystallization. A defining characteristic for distinguishing quartzite from sandstone is that when broken with a rock hammer, the quartzite crystals break across the grains rather than around the grains as in sandstone. Compared with marble, quartzite is very hard and resistant to weathering. Marble is metamorphosed limestone or dolostone composed of calcite or dolomite. Recrystallization has simply generated larger interlocking crystals of calcite or dolomite. These minerals are considerably softer than quartz. Another way to distinguish marble from quartzite is with a drop of dilute hydrochloric acid. Marble will effervesce (fizz) if it is made of calcite. A third non-foliated rock is hornfels identified by its dense, fine grained, hard, blocky or splintery texture composed of several silicate minerals. Crystals in hornfels are so small that specialized study is required to identify them. Most importantly this growth or reduction in size takes place without melting the rock.

Interlocking quartz grains in a quartzite.
Macro view of quartzite. Note the interconnectedness of the grains.

Undeformed quartz grains do not interlock.
Unmetamorphosed, unconsolidated sand grains have space between the grains.

Your Score:  

Your Ranking:  

6.3 Metamorphic Grade

Large weathered garnet crystals in a matrix of platy micas. The garnets are round-shaped with octagonal sides.
Garnet schist.
The range of metamorphic change that a rock may undergo is typically referred to as a metamorphic grade. Rocks start as a protolith and progress up from low grade to high grade. Low-grade metamorphism begins at temperatures and pressures just above sedimentary rock conditions. Among foliated metamorphic rocks, increasing metamorphic grade is seen in the sequence: slatephylliteschistgneiss. These rock textures are made because new minerals are formed that are  stable at different temperatures and pressures within the earth.

Index minerals are special minerals that only form at certain temperatures and pressures and therefore can be used to identify the degree of metamorphism to which the rocks have been exposed. The particular index mineral that forms depends on the original chemistry of the parent rock. Geologists finding these minerals in metamorphic rocks have an important clue to the protoliths and the metamorphic conditions they were exposed.In some cases, from low-grade to high-grade common index minerals are chlorite, muscovite, biotite, garnet, and staurolite. In other cases, the index minerals may include sillimanite, kyanite, and andalusite which exhibit a property called polymorphism, that is they all have the same chemical formula (Al2SiO5) but under different conditions of temperature and pressure, form different crystal structures with different properties. The figure below is a phase diagram of these three minerals showing the realms of temperature and pressure in which each is stable. Phase diagram of sillimanite, kyanite, and staurolite. 

Some metamorphic rocks are named based on the highest grade index mineral present. A chlorite schist is a schist with the chlorite index mineral that indicates a low-grade of metamorphism. At a little higher grade, a muscovite schist has the index mineral muscovite. At an even higher grade garnet forms as the index mineral making garnet schist.

Your Score:  

Your Ranking:  

6.4 Metamorphic Tectonic Environments

As with igneous processes in the Earth’s upper mantle, metamorphic rocks form at different zones of pressure (depth) and temperature as shown on the pressure-temperature (P-T) diagram. The term facies is an objective description of a rock. In metamorphic rocks facies are groups of minerals called mineral assemblages. The names of metamorphic facies on the pressure-temperature diagram reflect minerals and mineral assemblages that are stable at these pressures and temperatures and provide information about the metamorphic processes that have affected the rocks. This is useful when interpreting the history of a metamorphic rock.

Metamorphic facies are controlled by temperature and pressure. Low temp and pressure facies are zeolite facies. Low pressure but higher temp are greenschist then hornfels facies. Higher pressures create amphibolite and granulite facies. High pressure and temperature facies are eclogite facies.
Pressure-temperature graph diagram showing metamorphic zones or facies.

In the late 1800s, British geologist George Barrow mapped zones of index minerals in different metamorphic zones of an area that underwent regional metamorphism. Barrow outlined a progression of index minerals, named the Barrovian Sequence, that represents increasing metamorphic grade: chlorite (slates and phyllites) -> biotite (phyllites and schists) -> garnet (schists) -> staurolite (schists) -> kyanite (schists) -> sillimanite (schists and gneisses).

Metamorphic zones in Scotland show increasing metamorphic grade across a transect of a deformed mountain range.
Barrovian sequence in Scotland.

The first of the Barrovian sequence has a mineral group that is commonly found in the metamorphic greenschist facies. Greenschist rocks form under relatively low pressure and temperatures and represent the fringes of regional metamorphism. The “green” part of the name is derived from  green minerals like chlorite, serpentine, and epidote, and the “schist” part is applied due to the presence of platy minerals such as muscovite. Depending on the original rock chemistry, regional metamorphism will progress from the zeolite facies through greenschist and amphibolite facies, and finally granulite and eclogite facies.

6.4.1 Burial Metamorphism

Burial metamorphism occurs when rocks are deeply buried (> 2000 meters) . Burial metamorphism commonly occurs in sedimentary basins, where rocks are buried deeply by overlying sediments. As an extension of diagenesis, a process that occurs during lithification (Chapter 5), burial metamorphism can cause clay minerals, such as smectite, in shales to change to another clay mineral illite. Or it can cause quartz sandstone to metamorphose into the quartzite such the Big Cottonwood Formation in the Wasatch Range of Utah. This formation was deposited as ancient near-shore sands in the late Proterozoic (see Chapter 7), deeply buried and metamorphosed to quartzite, folded, and later exposed at the surface in the Wasatch Range today. Increase of temperature with depth in combination with an increase of confining pressure produces low-grade metamorphic rocks with a mineral assemblages indicative of a zeolite facies .

6.4.2 Contact Metamorphism

Contact metamorphism occurs when rocks are exposed to high temperatures and low pressures. For example when a magma intrudes into pre-existing rocks, or a lava flow spreads over a surface. Like all metamorphic rocks, the chemistry of the parent rock is a major factor in determining the final metamorphic rock and index minerals. If the parent rock is fine-grained like shale or basalt, the high temperatures can recrystallize the minerals characteristically producing hornfels. Surrounding igneous intrusions, contact metamorphism can create a quartzite out of a sandstone and marble out of a limestone. Deep intrusions can create a chilled zone or metamorphic aureole of altered rock in which the degree of metamorphism diminishes with distance away from the igneous contact. This results in rings of various index minerals surrounding the intrusion such as with the Alta Stock in Little Cottonwood Canyon, Utah. The Alta Stock intruded the surrounding siliceous dolostones with index minerals with talc on the outside, tremolite (an amphibole), forsterite (an olivine), and others located closer to the granite .

Altered rock adjacent to an igneous intrusion.
Contact metamorphism in outcrop.
The low pressures and high temperatures associated with contact metamorphism can produce numerous facies. The hornfels facies involves the lowest pressures. At slightly higher pressures greenschist, amphibolite, or granulite facies can be produced, depending on the temperature and protolith mineralogy.

6.4.3 Regional Metamorphism

Regional metamorphism occurs when temperatures and pressures are exerted on a rock over a large geographic area. This is often associated with mountain belts from converging continental tectonic plates. Increasing metamorphic grade can be observed as one travels from the edge of a mountain belt into its core. This setting for metamorphism can produce the Barrovian sequence mentioned above, with the lowest-grade metamorphism on the flanks of the mountains and the highest grade near the core of the mountains.

An example is a drive traveling eastward from New York state through Vermont into New Hampshire, in the northern Appalachian Mountains. Along this route, you can see the gradual increase of metamorphism from sedimentary rocks to low-grade metamorphic rocks, then higher-grade metamorphic rocks, and eventually the granitic core.  The rock sequence is sedimentary rocks then slates, phyllites, schists, gneisses, and migmatites and granites of New Hampshire, “the Granite State.” The reverse sequence can be seen heading east through eastern New Hampshire to the coast .

6.4.4 Subduction Zone Metamorphism

A blue rock with bands of silvery mica grains.
Blueschist

Another way that regional metamorphism can occur is subduction zone metamorphism. Subduction zone metamorphism takes place when a slab of oceanic crust is subducted into a realm of higher pressure and low temperature. Rock is a pretty good insulator so temperature within the subducting slab increases fairly slowly relative to pressure which increases instantaneously with burial. Thus the metamorphic realm of the subduction zone is high pressure/low temperature. One index mineral that forms at high pressure but low temperatures is glaucophane, which has a distinctive blue color. Thus, this zone is called the blueschist facies on the P-T diagram above. The California Coast Range near San Francisco has blueschist facies rocks associated with past subduction such as actual blueschists, greenstones (chlorite minerals in metamorphosed basalt), and folded red chert beds .  

6.4.5 Fault Metamorphism

Layers of shears material with rotated grains.
Mylonite

There are a range of metamorphic rocks made along faults that range from near the surface to the bottom of the crust, and into the mantle. Near the surface, rocks involved in repeated or extending faulting produce a material called rock flour, which is rock ground up to the particle size of flour used for food. At lower depths, faulting create cataclasites . At depths below cataclasites, mylonites are formed. Mylonites are metamorphic rocks created by dynamic recrystallization through directed shear forces, generally resulting in a reduction of grain size . When larger, stronger crystals (like feldspar, quartz, garnet) embedded in a metamorphic matrix are sheared into an asymmetrical eye-shaped crystal, an augen is formed .

Rounded mineral grains from shear forces.
Examples of augens.

6.4.6 Shock Metamorphism

A small grain of sand showing a prismatic inside with lines across it.
Shock lamellae in a quartz grain.
Shock (also known as impact) metamorphism is metamorphism resulting from meteor or other bolide impacts, or from a similar high-pressure shock event. Shock metamorphism is the result of very high pressures delivered relatively rapidly. Shock metamorphism produces planar deformation features, tektites, shatter cones, and quartz polymorphs. Shock metamorphism produces planar deformation features (shock laminae), which are narrow planes of glassy material with distinct orientations found in silicate mineral grains. Shocked quartz has planar deformation features 

Shatter cones are cone-shaped features, that show lines that converge to cone shapes.
Shatter cone.
Shatter cones are cone-shaped pieces of rock created by dynamic branching fractures caused by high impact . Their diameter can range from microscopic to several meters. Fine-grained rocks with shatter cones show a distinctive horsetail pattern.  The quartz polymorphs coesite and stishovite are indicative of impact metamorphism . As discussed in the Minerals Chapter, polymorphs are minerals with the same composition but different crystal structures. Intense pressure (> 10 GPa) and moderate to high temperatures (700-1200 °C) are required to form these minerals.

Teardrop-shaped glass that looks like obsidian.
Tektites
Impacts and other sudden high energy events can produce glass. Tektites are gravel-size glass grains ejected during an impact event. They resemble volcanic glass but, unlike volcanic glass, tektites contain no water or phenocrysts, and have a different bulk and isotopic chemistry. Tektites contain partially melted inclusions of shocked mineral grains . Although all are melt glasses, tektites are also chemically distinct from trinitite, which is produced from thermonuclear detonations , and fulgurites, which are produced by lightning strikes . All geologic glasses not derived from volcanoes can be called with the general term pseudotachylytes , a name which can also be applied to glasses created by faulting. The term pseudo in this context means ‘false’ or ‘in the appearance of’, a volcanic rock called tachylite because the material observed looks like a volcanic rock, but is produced by significant shear heating.

Your Score:  

Your Ranking:  

 

Your Score:  

Your Ranking:  

References